
Control of Scalable Magnetic Levitation System with Deep

Reinforcement Learning

Jeonghwan Kim
Seoul National University

whitealex95@snu.ac.kr

Abstract—A Novel Model of scalable 3D Magnetic Levitation
System is proposed with its control scheme. The Control of the
System is based on a Reinforcement Learning technique using
Deep Deterministic Policy Gradient(DDPG) agent which succeeds
in stabilizing the system with adequate energy efficiency.

I. INTRODUCTION

Magnetic Levitation System has come closer to our lives
than any other days. Its applications are used in versatile fields
of engineering, such as frictionless bearing, massive energy
storing devices, and Maglev trains. Recently, computer science
researchers have managed to use magnetic levitation system
to realize a 3D Pixel; a tangible object in a real world, where
the modification of such object is reflected to the virtual space
inside a computer and the modification in the virtual space is
again reflected to the object in the physical world. Such device
requires a magnetically levitated object to be controlled with
3 degrees of freedom; a position in x, y, and z coordinates.
zeroN, one of the most successful realization of 3D Pixel,
utilizes a cylindrical solenoid and an xy-plotter to actuate a
spherical magnet in a 3D space. However, due to the physical
constraints, the system lacks scalability, only being capable of
controlling a single magnet with limited speed.

In this paper, a novel way of realizing a scalable multi-
object magnetic suspension system and its control scheme
is proposed. The system is comprised of a 2D array of
cylindrical electromagnets to generate spatial magnetic field
and a spherical magnet to be levitated. The proposed dynamic
system is highly nonlinear, unstable and difficult to linearize
due to numerical error in calculating derivatives of elliptic
integral terms inside the system. As a result, we control the
system using the recent deep reinforcement learning tech-
niques. As a result, the reinforcement learning agent succeeds
in stabilizing the system with high robustness and with low
energy consumption.

II. BACKGROUNDS

A. Magnetic Levitation

Magnetic Levitation, or magnetic suspension is a method
of levitating an object by canceling the gravitational force
with force generated by external magnetic field. Although
Earnshaws theorem states that paramagnetic materials cannot
be levitated with stability in a static magnetic field, many
work arounds such as using superconductors or diamagnetic
levitation are developed. One of the most general and widely
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Fig. 1: Magnetic Levitation Model with Cylindrical Solenoid.
(a) is a classical example of a magnetic levitation system
where the object can be controlled in only one dimension.
Letters a, b, n, I each denotes the radius(m), height/2(m),
windings(#/meter), and current(A). (b) is a 2-D array of
cylindrical electromagnet which forms a plane parallel to the
xy-plane

used method to achieve magnetic levitation system is use a
feedback loop. One of the most famous application of such
feedback loop based magnetic levitation system is a magnetic
levitation train where the train wraps around the track and is
lifted upward by magnetic force. In order to generate a stable
feedback loop, knowledge about the system such as shape and
strength of the magnetic field generated by the system are
necessary.

1) Magnetic Force of Cylindrical Electromagnet: In this
section, we analyze magnetic force generated by a cylindrical
solenoid drawn in Figure 1(a) According to the law of physics,
the relation between magnetic field and the force generated by
it is as follows.

dF = (dM · ∇)B = d ~M · ∇ ~B (1)

This implies that if we can obtain the magnetic field in
space, we can calculate force from it. Luckily, with thanks to
the symmetry, it is not hard to calculate the magnetic field of
the points located on the axis of the cylinder.

~Bz =
µ0nI
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z + b√
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ẑ (2)



By calculating the z derivative of (2), force equation can be
obtained:

~Fz = ~Mz
∂Bz
∂z = mz

µ0nI
2
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(4)

where I is a current to the electromagnet, n is the number of
rotations of coil per meter, and µ is the magnetic constant. The
simplicity of the equation makes the system easy to linearize,
leading to various types of control applications using magnetic
levitation system.

In the general case, the magnetic field of a cylindrical
electromagnet can be written as:

Bρ = µ0nI
π dα+C (k+, 1, 1,−1)− α−C (k−, 1, 1,−1)e (5)
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π

a
a+ρ

[
β+C

(
k+, γ

2, 1, γ
)
− β−C

(
k−, γ

2, 1, γ
)]

(6)

where C (kc, p, c, s) is Bulirsch’s Generalized Complete Ellip-
tic Integral, with the constants:

α± =
a√

z2
± + (ρ+ a)2

β± =
z±√

z2
± + (ρ+ a)2

k± =

√
z2
± + (ρ− a)2

z2
± + (ρ+ a)2

γ =
a− ρ
a+ ρ

2) Bulirsch’s Generalized Complete Elliptic Integral: Bu-
lirsch’s generalized complete elliptic Integral, (or just simply
cel):

C (kc, p, c, s) =
∫ π/2

0
c cos2 φ+s sin2 φ

(cos2 φ+p sin2 φ)
√

cos2 φ+k2c sin2 φ
dφ (7)

is a typical form of representing complete elliptic integral that
generalizes all three Legendre canonical forms (i.e. the elliptic
integrals of the first, second and third kind) and the Carlson
symmetric form. The relations between cel and other forms of
elliptic integral are in the appendix.

Reinforcement Learning is a Learning frame work where
a learning agent learns by interacting with the environment,
observing the state and receiving rewards. At each time step t,
an agent receives state value st from the interpretation of an
environment and chooses an action at from the action space to
interact with the environment. This results in a new state st+1

and a step reward rt+1. The objective of the reinforcement
learning agent is to learn a policy function π that maps an
action for each state so that it can maximize the return, a
discounted sum of total reward the agent will receives.

In order to obtain the optimal policy, most reinforcement
learning algorithms utilize action-value function which de-
scribes the expected return when the agent in state st takes
action at.

Qπ(s, a) = E
[
rt+1 + λrt+2 + λ2rt+3 + . . . |s, a

]
= Es′ [r + λQπ (s′, a′) |s, a]

(8)

(a) initial state (b) transitioned state (c) multiple levitation

Fig. 2: Solenoid Selection Rule. (a) Magnetic levitation force
is generated by the three nearest solenoids. (b) The nearest
solenoids are easily determined by checking which triangle
the object is located at. (c) Since only three solenoids are
used for each object, multiple objects can be levitated unless
they are exactly adjacent to each other.

B. Reinforcement Learning

The action-value function is also noted as a Q function and
the value at each state-action pair (s,a) is called the Q value.
From the above equation, we can easily see that the optimum
Q-value, which we denote Q∗ satisfies the equation

Q∗(s, a) = Es′
[
r + λmax

a′
Q∗ (s′, a′) |s, a

]
(9)

and the optimal policy for state st is

π∗(s) = argmax
a

Q∗(s, a) (10)

It is known that if we repeatedly evaluate the Q value for the
current policy, update the policy by using argmax for each
Q value, the Q value is guaranteed to converge to the optimal
value. Many ways such as dynamic programming have been
used to obtain the optimal Q function, but such methods are
limited in that they are model based methods, meaning that
we have to know the model, or the transition probability to
update the function. However, Q-learning solves this problem
by using temporal difference(TD) as an update rule:

Q (st, at)← Q (st, at) + α [rt+1 + γmaxaQ (st+1, a)−Q (st, at)] (11)

where α is learning rate and the multiplicand of α is the
temporal difference, a difference between the current value
estimate and the future value estimate.

In order to adequately update the state-value function using
the temporal difference, Q-learning does exploration based on
ε-greedy method, where an agent takes greedy action with
the probability of 1 − ε and takes a random action with the
probability of ε.

The Q learning algorithm is highly useful for solving the
reinforcement learning problem in a model free low dimen-
sional, tabular spaces. However, in order to solve problems
with large state and action spaces, Q-value for all state-action
pair cannot be saved. Therefore, function approximators such
as Neural Networks are utilized to approximate the Q value.

One of the most famous reinforcement learning algorithm
Deep Q-Learning(DQN) is a q-learning algorithm which uses
Deep Neural Networks as a function approximator to train an
agent learn to play ATARI 2600 games while only given raw



pixel images. It enhances its performance using techniques
such as Experience Replay and separate target networks,
leading to the superhuman performance in many of the games
it played.

Although DQN was able to solve high dimensional prob-
lems, it is not yet able to solve problems with continuous
action spaces. To work around this problem, Deep Determin-
istic Policy Gradient(DDPG) algorithm utilizes an actor critic
way to solve the continuous action space problem. Unlike
DQN, an actor learns the policy directly, while a critic is used
for evaluating the policy function estimated by the actor in
a similar way as DQN. Also, due to its deterministic policy
and the continuous nature, in order to do exploration, DDPG
adds noise generated by Ornstein-Uhlenbeck random process,
instead of using ε-greedy like Q-learning methods.

III. MODEL

In order to control a 3 dimensional location of a spherical
magnet, an actuator that can generate magnetic forces to all
directions(x,y,z) is needed. In the previous approach zeroN,
the z-axis of a spherical magnet is controlled by a single
electromagnet and the x-axis and y-axis are controlled by
mechanically moving the electromagnet in the x,y direction
using an xy-plotter.

Since the x,y position of the levitated object is controlled
by moving a stable point, there is limit on the speed that the
object can be moved. Also, due to the use of an xy-plotter for
mechanically positioning the cylindrical magnet, only a single
object can be controlled.

In this paper, we change the method so that a scalable 3d
magnetic levitation is available by using multiple solenoids.
In order for the system to be scalable, the magnet’s position
should be controlled only by electromagnetic force. To achieve
this, 2D array of solenoids are positioned parallel to the xy-
plane like in figure 1(b). Since each of the solenoid pulls
the object towards its center, by superpositioning the forces
generated by the array of solenoids, the plane will be able
to generate the pure z-axis force, canceling out xy-directional
force element.

During the activation of the system, it is intractable to
activate all solenoids in the array. Therefore, only three
solenoids that are nearest to the levitating object are activated
for the control of one levitated object. Figure 2 illustrates
such situation. Since the levitated object, illustrated as a black
circle, is inside the red triangle4ACD, the solenoids selected
for the levitational force become the solenoids A,C, and D.
Figure 2(b) illustrates a situation when the levitated object
is moved to a different triangular region 4ADB, solenoids
A,D,B being the three closest solenoids. As a result, solenoid
C gets deactivated and the solenoid B will join the generation
of magnetic levitation force. Figure 2(c) shows how multiple
objects can be levitated and controlled. Unless objects are too
close to each other, control of multiple levitation can be done
almost independently given the fact that the magnetic field’s
intensity decreases rapidly in the radial direction.

Fig. 3: 3D Modeled 3D Magnetic levitation system for simu-
lation in MATLAB/Simulink

In order to calculate the exact magnetic force of an ideal
electromagnet, equation (1) can be used by calculating the
jacobian of a magnetic field:
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However, unlike the Legendre canonical forms, differentia-

tion cel does not directly lead to a cel-like function. Therefore,
the cel function in each of the elements is transformed to the
Legendre canonical forms:
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resulting in a modified representation of the magnetic field:
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Using the derivatives of the canonical forms

∂Π(n,k)
∂n = 1

2(k2−n)(n−1)

(
E(k) + k2−n

n Π(k) + n2−k2
n Π(n, k)

)
∂Π(n,k)
∂k = k
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E(k)
k2−1 + Π(n, k)

)
and the partial derivatives of the coefficients α±, β±, k±, and
γ in radial and axial directions,



(a) Magnetic Levitation System created in a simulink environment (b) training status of a DDPG Agent

Fig. 4: (a) Magnetic Levitation System was simulated in a simulink simulator. (b) Training statistics of the agent. In only 7
hours in a single CPU, the agent learns how to stabilize in a highly unstable 3D Magnetic Levitation System
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With the above result, the jacobian of the magnetic field can
be derived in the cylindrical coordinates. It is than converted
to cartesian coordinates using the equations below.
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With the jacobian of the magnetic field derived, the mag-
netic force the magnet receives can be calculated using the
equation (1). Since the main focus of the magnetic levitation
system is to cancel the gravitational force of the object, most
of the magnetic forces generated are in the +z direction. As a
result, the dipole axis of the levitated object lines up with the
z-axis, leading to the simplified calculation of magnetic force.

IV. SIMULATION

Using the mathematical model derived from the previous
section, we created a simulator for the 3d magnetic leviation
system via matlab and simulink. The simulation dealt with 3
electromagnets, restricting the xy region of control to a trian-
gular space and not taking account of the solenoid selection
rule. The radius of the modeled ideal solenoid is 3cm, height

is 6cm, and the solenoid is coiled 100 times per meter. The
position of the three magnets are (0,0,0), (0.03,0.03

√
3,0), and

(0.06,0,0).
Limiting the x,y axis to the center of the three trian-

gles, the system succeeded in remaining stable using a PID
controller, where the same current was applied to all three
electromagnets. However, due to numerical unstability that
appears in the subtraction of elliptic integral inside the force
calculation formula, the system could not linearize accurately,
making it hard to apply classical control techniques for general
location. As a work around, the Deep Deterministic Policy
Gradient(DDPG), a well known algorithm in the reinforcement
learning framework was implemented to control the system.

V. CONTROL VIA REINFORCEMENT LEARNING

In order to transfer the 3d magnetic levitation system to the
reinforcement learning framework, reward function generator
and failure detector was added to the system. The objective
of this learning problem was to stay levitated and reach an
arbitrary target location with stability. In order to reinforce
the agent to stay levitated without falling, the agent was given
bonus for staying in a safe region while being punished for
being far from target location. The norm of the velocity of
the object was used as a penalty in order to decrease the
oscillation that occurs frequently in feedback systems. The
resulting reward function becomes:

rt = is alive− 200error2
t − 0.5v2

t

where errort is the error in location between target location
and current location, and vt is the velocity of the object. The
agent is considered not alive if the position of the agent went
across the triangular prism created by the three axes or if the
magnet fell below 10 centimeters.

The DDPG Agent received 9 dimensional vector of position,
velocity, and error(a distance between the target and the agent).
Receiving such state information, the agent generates an action
signal, a 3 dimensional vector that indicates the current applied
to each of the three electromagnets. The agent has two net-
works, an actor network which learns the policy mapping from



(a) Current Needed for Levitation (b) Position of the Levitated Object

Fig. 5: (a) DDPG Agent learns a policy that uses far less current than the maximum current available. It’s yellow, blue, red line
stands for the currents of solenoid 1, 2, and 3 (b) The DDPG agent succeeds in both levitating and stabilizing the magnetic
object. Its yellow, blue, red line stands for x,y,z position of the levitated object.

state to action and a critic network that tends to approximate
the Q-value. Both actor and critic networks are comprised of
fully connected layers. Critic Network recieves both action
and state, and each of them go through two different fully
connected layer of sizes 50 and 25. The output of the two
layers are than added up and passes one more Fully connected
layer with ReLU activation. The actor network passes through
a relative small network which is consisted of only one hidden
layer of size 9 with tanh activation. The training was done on
MATLAB’s Reinforcement Learning Toolbox. Learning was
set to end when the agent learns to stay levitated for 3 seconds
and received low position/velocity penalty. The Learning took
only y hours of training in a synchronous CPU system, which
ran less than 15000 episodes. The learning curve is shown as
in the Figure 4(b).

Performance of the trained agent is plotted in Figure 5(a)
and (b). Figure 5 is an experiment where the object is placed
near (0.03, 0.01*

√
(3),-0.06) + small gaussian error, and

the target is also placed at (0.03, 0.01*
√

(3),-0.06) + small
gaussian error. Figure 5(a) shows that even though the agent
could use up to 20 A of current, the agent only managed to use
significantly less amount of current. Which was very different
from the result of the PID controller which used up to 80A of
current when the limit was not set.

Figure 5(b)’s yellow, blue, red line stands for x,y,z position
of the levitated object. It is interesting how smoothly the
levitated object moves as time passes. One of the most
satisfsying fact is that the agent managed to stabilize both the
x-directional and the y-directional errors, which the controller
created in the previous section could not accomplish.

VI. DISCUSSION AND FUTURE WORK

A newly designed scalable 3d magnetic levitation system
was successfully controlled in the simulation environment by
using the reinforcement learning techniques. The controller
learned from the DDPG agent succeeded in controlling the
system with adequate amount of current which is bearable

to affordable electronic devices. Also, it is be expected that
the controller’s performance can get better by using bigger
networks for the agent’s actor network, which was formally
only a layer deep.

Since the newly modeled system can move freely in a 3D
physical space without making any contact with the external
environment, the system will be useful for representing multi-
ple pixel in a digital system to the physical system. It will also
be useful in ultra clean environments where small disturbance
of the environment might result in disastrous results.

Through this model, it is shown that the reinforcement
learning agent can take over the place where classical control
used to take place in. With the rapid advances in the field of
reinforcement learning, more places of the classical control
may be replaced due generality of the reinforcement learning
algorithms
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APPENDIX

A. Relation between cel and Legendre Form

Elliptic Integral is a function that can be written as

f(x) =

∫ x

c

R(t,
√
P (t))dt

where c is a constant, R is a rational function, P is a
polynomial with degree 3 or 4 without repeated root. It is
known that every elliptic integral can be reduced to three
Legendre canonical forms and integral over rational functions.
The first, second, and third kind of Legendre canonical form
of incomplete elliptic integral are

F (φ, k) =

∫ φ

0

1√
1− k2 sin2(t)

dt

E(φ, k) =

∫ φ

0

√
1− k2 sin2(t)dt

Π(φ, n, k) =

∫ φ

0

1(
1− n sin2(t)

)√
1− k2 sin2(t)

dt

We call the elliptic integrals complete when the φ becomes
π/2. In this case, the complete elliptic integral of first, second,
and third kind become:

K(k) =

∫ π
2

0

dθ√
1− k2 sin2 θ

=

∫ 1

0

dt√
(1− t2) (1− k2t2)

E(k) =

∫ π
2

0

√
1− k2 sin2 θdθ =

∫ 1

0

√
1− k2t2√
1− t2

dt

Π(n, k) =

∫ π
2

0

dθ(
1− n sin2 θ

)√
1− k2 sin2 θ

Since the elliptic integrals cannot be expressed in elemen-
tary functions, it has to be calculated using numerical methods.
In general, Carlson’s symmetric forms are used to calculate the
incomplete elliptical integrals.

RF (x, y, z) = 1
2

∫∞
0

dt√
(t+x)(t+y)(t+z)

RJ(x, y, z, p) = 3
2

∫∞
0

dt

(t+p)
√

(t+x)(t+y)(t+z)

RC(x, y) = RF (x, y, y) = 1
2

∫∞
0

dt

(t+y)
√

(t+x)

RD(x, y, z) = RJ(x, y, z, z) = 3
2
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0

dt

(t+z)
√

(t+x)(t+y)(t+z)

However, it is known that Bulirsch’s generalized elliptic
integral, cel, works well in the complete case. The complete
elliptic integrals of the First, Second, and Third kinds can be
represented using cel by

C (kc, p, c, s) =
∫ π/2

0
c cos2 φ+s sin2 φ

(cos2 φ+p sin2 φ)
√

cos2 φ+k2c sin2 φ
dφ

K(k) = C
(√

1− k2, 1, 1, 1
)

E(k) = C
(√

1− k2, 1, 1, 1− k2
)

Π(n, k) = C
(√

1− k2, n+ 1, 1, 1
)

In cases where the derivatives of cel needs to be calculated,
its derivative does not fit to the form of cel directly. As a work

around, the derivative can be represented using the derivatives
of the Legendre canonical forms

∂K(k)
∂k = E(k)

k(1−k2) −
K(k)
k

∂E(k)
∂k = E(k)−K(k)

k
∂Π(n,k)
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(
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n K(k) + n2−k2
n Π(n, k)

)
∂Π(n,k)
∂k = k

n−k2

(
E(k)
k2−1 + Π(n, k)

)
B. Derivatives of Magnetic Field in Cylindrical Coordinates

Using the above facts and the derivations in the section
3, the derivatives of the magnetic field of the cylindrical
solenoid in cylindrical coordinates can be written as follows:
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